PHYSICAL REVIEW E

VOLUME 53, NUMBER 3

MARCH 1996

Thermodynamic self-consistency criterion in the mixed integral equation theory
of liquid structure

J. Bergenholtz and N. J. Wagner

Colburn Laboratory, Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716

B. D’Aguanno

Centro di Ricerca, Sviluppo e Studi Superiori in Sardegna, 09100 Cagliari, Italy
(Received 7 September 1995)

The insensitivity of the thermodynamically self-consistent mixed integral equation approach to the
choice of and prescription for mixing the component closures is demonstrated using the square-well
potential. Structures and mechanical properties are nearly identical among three different closure
equations, which all compare well to Monte Carlo simulation data. These results suggest that future
improvements will come from further applications of thermodynamic self-consistency arguments.
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Following the idea of Rowlinson [1], the thermody-
namically self-consistent Rogers and Young (RY) [2] and
HMSA [3] closures to the Ornstein-Zernike equation were
formulated and deemed successful in part due to the
mixing procedure, i.e., enforcing the hypernetted-chain
(HNC) closure at large interparticle separations and the
Percus-Yevick (PY) or soft-core mean-spherical (SMSA)
approximations at short interparticle separations, respec-
tively. The bridge diagrams deleted in the HNC approx-
imation are of short range [4] and thus, one expects that
the HNC approximation has to be enforced at large in-
terparticle separations where those diagrams are insignif-
icant. Alternatively, the PY closure, based on empirical
evidence, is thought to be more accurate at short ranges
where the strong repulsions act. It must be noted, how-
ever, that the existence of a solution that satisfies the
self-consistency criterion is independent of these observa-
tions. The self-consistency criterion most commonly em-
ployed is that which enforces equality between isothermal

TABLE I

compressibilities obtained via the fluctuation and virial
routes

e = (1 - p/c(r)dr) o (1a)
wpt (1b)

where p is the number density, ¢(r) the direct correlation
function, p the virial pressure, and # = (kBT)_l‘ This
equality can be met whenever the following statement is
satisfied by the mixed integral equation scheme
< .
XﬂAuC7 XVBlr > X%uc’ X:’;r’ (2)
where A and B refer to two arbitrary closures. This

statement applies to any interaction potential and any
scheme that is constructed by mixing two individual clo-

Data for the A = 1.5 square-well pressure, excess internal energy, and inverse isothermal compressibility for the

HMSA and modified HMSA closures as functions of reduced density p* = po® and reduced temperature T* = kT/e. Monte
Carlo (MC) data for T"=5 is from Heyes [7] and for T"=2 from Henderson Madden, and Fitts [6]. Note, data for the M2
closure have been omitted where no self-consistency can be achieved according to Eq. (2).

p/pkT —U/Ne X
p" T HMSA M1 M2 MC HMSA M1 M2 MC HMSA M1 M2
0.1 5 1.119 1.120 1.119 1.11 0.617 0.617 0.618 0.615 1.264 1.265 1.263
0.2 5 1.292 1.294 1.292 1.30 1.262 1.260 1.265 1.25 1.717 1.725 1.709
0.3 5 1.544 1.548 1.543 1.52 1.945 1.943 1.950 1.95 2.494 2.510 2.468
0.4 5 1.919 1.924 1.916 1.87 2.672 2.671 2.679 2.70 3.809 3.833 3.753
0.5 5 2.483 2.491 2.478 2.40 3.440 3.440 3.445 3.475 6.004 6.040 5.894
0.6 5 3.336 3.348 3.326 3.45 4.224 4.226 4.224 4.27 9.607 9.673 9.370
0.7 5 4.620 4.643 4.599 4.65 4.984 4.988 4.967 5.045 15.43 15.57 14.84
0.8 5 6.537 6.585 6.61 5.667 5.673 5.75 24.76 25.07
0.9 5 9.380 9.482 9.72 6.229 6.235 6.35 39.88 40.52
0.5 2 1.344 1.353 1.356 1.35 3.622 3.622 3.625 3.636 3.802 3.837 3.784
0.6 2 1.967 1.972 1.974 1.97 4.400 4.400 4.399 4.415 7.214 7.238 7.176
0.7 2 3.109 3.115 3.116 3.20 5.166 5.168 5.161 5.174 13.22 13.27 13.09
0.8 2 5.013 5.038 5.008 5.08 5.848 5.854 5.806 5.861 23.03 23.24 22.10
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sures. One expects then that the success of these mix-
ing schemes depends on: (1) the nature and individual
performance of the ingredient closures; (2) how they are
mixed; and (3) the accuracy imparted by satisfying the
self-consistency criterion. In this paper we will use the
model square-well and Lennard-Jones 12-6 (LJ) fluids as
examples to show that the latter decidedly dominates the
accuracy of the solution, while the way in which the clo-
sures are mixed and the choice of closures only influences
the range of convergence.
To close the Ornstein-Zernike equation

g(r) =1 =c(r) +p / g(r—sl) —1e(s)ds  (3)

we will consider the following two modifications to the
HMSA closure equation

Mi1:

1
— o Bd1(r) f()v(r)—Bez(r)]
g(r)=e 1+ e 1 ) ,

f(r)y=1—e 1/am;

M2:
g(r) = e PHr(r) (1 + iﬁ{[l + f(r)y(r)]eF(Bd2(r)

f(r)
_1}> )

flry=1—e".

(5a)

(5b)

In these equations ¢ (r) and ¢2(r) are the repulsive and
attractive parts of the pair potential as defined by some
prescription, such as that of Weeks, Chander, and Ander-
sen [5]; v(r) = g(r) —e(r) — 1 with g(r), the radial distri-
bution function; f(r) is a switching function in which the
a parameter is adjusted to meet the self-consistency cri-
terion. In the first modified closure, referred to hereafter

TABLE II.
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FIG. 1.

(a) A=1.5 square-well g(r) and (b) S(k) for T*=2
and p*=0.7: points are 256 particle Monte Carlo data and the
(indistinguishable) lines are HMSA, M1 and M2 predictions.
Note that in (b), the k£ — 0 limit is related to the isothermal
compressibility via S(0) = x.

as M1, the original HMSA closure [Eq. (4a)] is left intact
while the switching function [Eq. (4b)] is altered from
the RY form [Eq. (5b)]. According to the interpretation
of Rogers and Young [2] and Zerah and Hansen [3], this
would suggest that the modified closure interpolates be-
tween HNC at short interparticle separations and SMSA

Data for the Lennard-Jones pressure, excess internal energy, and inverse isothermal compressibility for the

HMSA and RY integral equation schemes compared to simulation data (MC/MD) from Zerah and Hansen [3] and references

cited therein.

p/pkT U/Ne X!

p* T HMSA RY MC/MD HMSA RY MC/MD HMSA RY
0.5 20 1.94 1.94 1.93 0.58 0.58 0.52 3.43 3.42
1.333 20 7.91 7.90 8.00 18.6 18.6 18.86 25.81 25.64

0.5 5 1.86 1.867 2.37 2.37 3.78

1.0 5 6.32 6.27 6.43 -2.30 -2.35 -2.285 22.79 21.99
1.279 5 13.00 12.83 13.44 1.68 1.48 2.18 54.05 52.89
0.55 2.74 1.65 1.65 321 321 417

1.0 2.74 7.11 6.97 7.37 -4.33 -4.44 -4.19 30.60 28.55

1.1 2.74 9.90 9.65 10.17 -3.86 -4.00 -3.70 44.40 42.03
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at large interparticle separations, an exact reversal of the
original HMSA closure. In the second modified closure,
referred to hereafter as M2, we have linearized part of
the exponential in the original HMSA closure equation
to obtain a closure [Eq. (5a)] that interpolates between
SMSA and now PY instead of the HNC closure, while
maintaining the RY form for the switching function.

We have evaluated the mechanical properties of the
above modified closures as well as the original HMSA
closure. Table I contains pressure, excess internal energy,
and isothermal compressibility data for two supercritical
isotherms, as well as Monte Carlo data [6, 7] for compar-
ison. As shown, the integral equation results compare
favorably with the Monte Carlo data and the data from
the different closures are nearly indistinguishable. Only
at the highest densities do we see differences as high as
5%. This agreement can be traced to the fact that the
closures produce equilibrium structures which are nearly
identical. As seen in Fig. 1 the g(r) and the correspond-
ing S(k) predictions are indistinguishable among the dif-
ferent closures.

For subcritical temperatures we find that the isother-
mal compressibility along the liquid spinodal behaves
(classically) as x ~ Ap~2 for the M2 closure, whereas
the HMSA and M1 closures are less well behaved and
yield x ~ Ap~1, but only well below the critical tem-
perature [8]. All the mixed closures yield square-root
branch-point singularities along the vapor branch as do
the PY [9] and HNC closures [10] themselves.

These observations hold for other square-well widths
and, in addition, they hold for the Lennard-Jones fluid.
In Fig. 2 we show that, according to Eq. (2), there are
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thermodynamically self-consistent solutions to both the
HMSA and RY integral equation schemes for the LJ fluid.
Solutions to the RY scheme are also found for the square-
well potential, indicating that the presence of the attrac-
tion in the potential does not preclude the use of the
RY closure as previously postulated [3]. The existence
of a solution to the RY and other schemes depends on
the form of the potential only to the extent that the po-
tential affects the compressibilities of the component clo-
sures. Hence, the regions in the phase diagram where
solutions are found may be restricted as seen in Fig. 2
for the RY closure applied to the LJ fluid. However, as
demonstrated for the LJ fluid in Table II, when ther-
modynamically self-consistent solutions are found, they
yield thermodynamic properties in good agreement with
simulation data independent of the choice of component
closures.

In conclusion, the technique of enforcing thermo-
dynamic self-consistency of solutions to the Ornstein-
Zernike equation through mixed integral equations is a
powerful tool for predicting accurate fluid structures. Ir-
respective of the choice of and prescription for mixing the
closures, converged solutions to the mixed integral equa-
tion scheme yield equivalent fluid structures, and hence,
equivalent thermodynamic properties, that also agree
well with data from simulations. Interpreting the mix-
ing of closures to ensure thermodynamic self-consistency
to be somehow simply related to interpolating between
the structures resulting from the pure component clo-
sures is incorrect. These results suggest that attempting
to simultaneously satisfy higher-order consistency rela-
tionships [11], or attempting to produce closures that
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FIG. 2. Inverse isothermal compressibility as a function of reduced density for the HMSA and RY mixed integral equation
schemes at T*=2.74. The dashed lines are the compressibilities from the fluctuation route and the solid lines are from the virial
route for the component closures. The shaded area indicates regions of overlap where the HMSA /RY compressibility will be
located.
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meet the consistency criterion “globally” (equality be-
tween pressures) [12], can be fruitful, more so than at-
tempting to improve the ingredient closures. The choice
of closures, though not the way in which they are mixed,
should be made to ensure that a solution exists according
to Eq. (2). This choice, it must be noted, also dictates

the existence of and form of the critical behavior.
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